Re-engineering OntoSem Ontology Towards OWL DL Compliance

Guntis Barzdins, Normunds Gruzitis and Renars Kudins
Institute of Mathematics and Computer Science
University of Latvia

JCKBSE, Tallinn, August 2006
SemTi-Kamols Project

• Integration of Latvian language and semantic web technologies
 – Part of Semantic Latvia initiative*

• Natural language is a challenge and a good measure for advanced semantic web development

• Ontology based natural language processing

• Inspired from the success story of OntoSem framework

• Modified towards latest semantic web approaches

OntoSem Framework

- Based on theory of ontological semantics*

- **Full-fledged** ontology
 - Descendant of Mikrokosmos
 - http://crl.nmsu.edu/Research/Projects/mikro/index.html
 - Disambiguate word meanings
 - Semantic parsing

- Lexical application
 - **Text meaning representation** (TMR)
 - http://semnews.umbc.edu

OntoSem Framework

The Problem

- There are “a priori” defined senses of words, but a sense of a word can be defined by its use-case
Open and Closed Worlds

- **Closed world assumption:**
 - if statement cannot be proved it is assumed to be false

- **Open world assumption:**
 - if statement cannot be proved lack of knowledge is assumed

- Natural language is closer to the **OWA**

<table>
<thead>
<tr>
<th></th>
<th>OWA</th>
<th>CWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotonic</td>
<td>Description Logic (OWL-DL)</td>
<td>Data bases</td>
</tr>
<tr>
<td>Non-monotonic</td>
<td>DBs and Frames with defaults (OntoSem)</td>
<td></td>
</tr>
</tbody>
</table>
OntoSem Ontology

- Written in LISP like syntax
- **Poorly documented** formal semantics
- Frame KR schema
 - **Non-monotonic** reasoning (frames with defaults)
 - **Closed world assumption**
OWL-DL Ontologies

- OWL-DL classes overlap

A red artificial flower

A library
Main Idea

• The usual metaphor of building a class with its attributes (UML) is not directly applicable in OWL DL

• Rather, we can use OWL DL to define classes by their logical characteristics and getting much more powerful reasoning support

• Determining types – word-senses using properties and use-cases
Ontosem to OWL-DL

- **Classes**
 - “all” is translated to “all”, instance of owl:Class
 - “objects” and “events” - instances of owl:Class

- **Properties**
 - Properties - instances of owl:ObjectProperty
 - “ontology-slot” is not translated
 - “is-a”, “domain”, etc., are already part of OWL and RDF(S)

- **Facets**
 - “defaults” – non-monotonic logic (CWA)
 - “inverse”, “sem” facets were translated
Soccer frame

(make-frame soccer
 (agent (inv (common striker)))
 (is-a (value (common sports-discipline)))
 (location (sem (common playing-field sports-arena))))

• Universal quantification should be used, otherway we get ontology which is equivalent to DB with mandatory fields which means non-monotonic reasoning (CWA)

• By means of OntoSem semantics, location of “soccer” cannot be both “playing-field” and “sports-arena”
Ontology debugging

- Large ontologies
 - Cyc
 - OntoSem
 - Wordnet, etc.

- Hard to keep consistent
 - Many developers
 - Changing knowledge

- Debug/test ontologies
Ontology debugging

- **Disambiguate** concepts
 - Add information on **disjoint classes - mandatory**
- **Run reasoner**
 - Pellet (open-source)
 - RacerPro (trial), etc.
- **Inconsistencies**
- **Redundancies**
Testing ontology

• Currently **txt2owl** is used for ontology testing
• **Create test-cases**
 – Explanatory dictionary
 – Hand made
• Check if created instances **belongs** to ontology
 – Reasoner
 – Specific application
• **Results**
 – Incomplete data
 – Inconsistencies with real world
Test “produce” event

- Honey: “a sweet sticky fluid made by bees”
Application of OntoSem OWL

• Adapted to
 – OWL-DL
 – Latvian language

• Application txt2owl
 – SWI-Prolog
 – Ontology driven
 – Text to OWL objects – TMR
Text analysis

- Verb - **event** is a main word in sentence
- **Thematic roles** are directly associated with verb*
- **Similarity to RDF triples**

Gudra māte māca meitu.

<Teach rdf:ID="teach_726">
 <GramTense>
 <Present rdf:ID="Present_967"/>
 </GramTense>
 <Agent>
 <Parent rdf:ID="parent_155">
 <GramGender>
 <Female rdf:ID="female_718"/>
 </GramGender>
 <GramCount>
 <Singular rdf:ID="Singular_263"/>
 </GramCount>
 <Literal-object-attribute>
 <Functional rdf:ID="Functional_432"/>
 </Literal-object-attribute>
 </Parent>
 </Agent>
 <Experiencer>
 <Offspring rdf:ID="offspring_918"/>
 ...
 </Experiencer>
</Teach>
Future work

- **Improve** lexical application
- **Understand metaphoric** relations between things, words and senses
 - Implement using SW technologies
- Develop methodology for **ontology testing** and debugging
Thank you!

Questions?

www.semti-kamols.lv